The Radon Transforms of a Combinatorial Geometry .2. Partition Lattices
نویسندگان
چکیده
منابع مشابه
Singular and maximal radon transforms: Analysis and geometry
Part 2. Geometric theory 8. Curvature: Introduction 8.1. Three notions of curvature 8.2. Theorems 8.3. Examples 9. Curvature: Some details 9.1. The exponential representation 9.2. Diffeomorphism invariance 9.3. Curvature condition (CY ) 9.4. Two lemmas 9.5. Double fibration formulation 10. Equivalence of curvature conditions 10.1. Invariant submanifolds and deficient Lie algebras 10.2. Vanishin...
متن کاملMulti-linear Generalised Radon Transforms 2
holds for all open sets U ⊆ Σ in a sufficiently small neighbourhood of the origin. We have already seen that (1) holds for non-trivial values of p only if the family Xπ of associated vector fields satisfies the Hörmander condition. A deeper fact is that the converse of this statement is true. This converse may be expressed in a very precise fashion which relates the range of Lebesgue exponents ...
متن کاملRadon transforms and packings
We use some basic results and ideas from the integral geometry to study certain properties of group codes. The properties being studied are generalized weights and spectra of linear block codes over a finite field and their analogues for lattice sphere packings in Euclidean space. We do not obtain any new results about linear codes, although several short and simple proofs for known results are...
متن کاملThe lnvertibility of Rotation Invariant Radon Transforms
Let R, denote the Radon transform on R” that integrates a function over hyperplanes in given smooth positive measures p depending on the hyperplane. We characterize the measures ,u for which R, is rotation invariant. We prove rotation invariant transforms are all one-to-one and hence invertible on the domain of square integrable functions of compact support, Li(R”). We prove the hole theorem: i...
متن کاملEstimates for Generalized Radon Transforms
Sobolev and L p ? L q estimates for degenerate Fourier integral operators with fold and cusp singularities are discussed. The results for folds yield sharp estimates for restricted X-ray transforms and averages over non-degenerate curves in R 3 and those for cusps give sharp L 2 estimates for restricted X-ray transforms in R 4. In R 4 , sharp Lebesgue space estimates are proven for a class of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1993
ISSN: 0001-8708
DOI: 10.1006/aima.1993.1044